

Evaluating Sample Preparation methods in a Core facility environment for samples with low amounts of protein

INTRODUCTION

This study tested several recent automated digestion devices to determine: > sensitivity for small starting total protein amounts as low as 1ug: we used suspension-trap (S-trap),

protein aggregation capture (PAC) and surfactant-assisted one pot > enhancement of extravesicular (EV) proteins in human plasma via two methods: perchloric acid depletion and EV enrichment via strong-anion exchange (SAX) magnetic beads.

Digestion of all samples was done either manually or using recent automated devices like Opentrons-2 and King Fisher APEX.

METHODS –see Fig 1 for details

Digestion technique evaluation:

Tryptic digestions were done to assess the lowest amount of total protein we can start with and still obtain good number of IDs. Mouse liver homogenates were subjected to reduction / alkylation / tryptic proteolysis, except the MagReSyn[™] hydroxyl beads PAC digestion.

Plasma extracellular vesicle (EVs):

Tryptic digestions on human plasma was done to assess the best method for enhancement of extravesicular proteins. Plasma samples were subjected to reduction / alkylation / tryptic proteolysis, except the Perchloric Acid method.

All tryptic peptides were then lyophilized, and resuspended in 0.1% TFA, and subjected to LC/MS analysis.

LCMS

Exploris480 (ThermoFisher) / Ultimate3000RSLC (ThermoFisher) -data-independent analysis

timsTOF HT (Bruker Daltronics) / Evosep nanoLC (Evosep) -data-independent analysis-Parallel Accumulation Serial Fragmentation (DIA-PASEF)

Data Analysis

DIA files were analyzed with Spectronaut v.18.6 software (Biognosis), using reviewed FASTA database for Homo Sapiens, UP00005640, and Mus Musculus, UP0000000589.

Results of Digestion technique evaluation, Fig2, Fig3

- 1) surfactant-assisted one-pot digestion, using a non-ionic detergent n-dodecyl-b-D-maltoside (DDM).
- 2) PAC using Hydroxyl magnetic beads (ReSyn Biosciences) and processed on a KingFisher Apex (Thermo Fisher) sample prep device
- 3) PAC using Hydroxyl magnetic beads (ReSyn Biosciences), processed manually

Fig2. Evaluation of the digestion four techniques' sensitivity and reproducibility: a) number of precursors and CVs for starting material of a) 10ug and b) 50ug

Starting protein amount	DDM In- Solution
1ug	37,377
1ug	36,380
1ug	36,733
1ug	36,434
1ug	36,592
1ug	36,579
1ug	35,656
10ug	37,314
10ug	32,388
10ug	38,004
10ug	38,629
10ug	38,788
50ug	35,419
50ug	34,674
50ug	33,679

material amounts: 1ug, 10ug and 50ug for the four digestion techniques.

Gabriela Grigorean; Lauren Yoon Dixon; Brett Phinney UC Davis Proteomics Core Facility, Davis, CA